Моделирование динамики электромагнитных полей, формируемых тестовой катушкой

Автор: Пек Борис

Постановка задачи

Научиться рассчитывать электрическое и магнитное поля методом конечных элементов в ближней зоне элементарных источников (витка с током).

Получить экспериментальные данные по распределению импульсных полей в ближней зоне.

Оценить применимость расчетных моделей путем сравнения расчетных данных с экспериментальными, оценить возникающие расхождения и найти объяснение возможных причин.

Сделать вывод о применимости результатом моделирования к реальным условиям.

Измерительное устройство

Сменные антенны АИПП:

Широкополосный диполь

Петлевая антенна

Блок-схема измерителя параметров помех

- 1. Сменная антенна
- 2. Выносной дифференциальный усилитель согласователь
- 3. Сдвоенный кабель РК50 в экране
- 4. Дифференциальный усилитель согласователь
- 5. Пиковый детектор положительных импульсов
- 6. Формирователь импульсов
- 7. Квазипиковый детектор положительных импульсов
- 8. Квазипиковый детектор отрицательных импульсов
- 9. Формирователь импульсов
- 10. Пиковый детектор отрицательных импульсов

Измерительные опыты для калибровки

Конический диполь в испытательном конденсаторе

Переменное электрическое поле в конденсаторе. Фиолетовый – напряжение на пластинах, синий – сигнал с АИПП.

Петлевая антенна в поле витка с током

Переменное магнитное поле в витке с током (сигнал с АИПП).

Калибровочные кривые

Электрическое поле в конденсаторе:

$$E = \frac{U}{d}$$

Закон Био-Савара-Лапласа для витка с током:

$$H_{ocu} = \frac{I}{2} \cdot \frac{R^2}{(R^2 + h^2)^{3/2}}$$

Где:

I – сила тока, R – радиус витка *h* – высота над плоскостью витка

$$H_{ocu} = \frac{I}{2R}$$

Форма кривых определяется только параметрами измерительной установки, что позволило построить калибровочный график для поля Н, несмотря на отсутствие экспериментальных данных для всего диапазона изменения поля Н.

Измерение импульсных полей тестовой катушки

Сигнал с генератора напряжения

lek Ctor

Петлевая антенна в поле витка с током

Сигнал с петли. Нормаль петли параллельна нормали кольца.

Сигнал с диполя. Ось диполя параллельна плоскости кольца.

Схема обработки экспериментальных данных

	В	С	D	E	F	G	Н	1
1	X \\\ Y	44	46	48	50	52	54	56
2	22	111	154	146	170	202	230	230
3	24	131	154	178	206	250	270	290
4	26	161	182	202	240	298	336	350
5	28	177	206	230	272	320	290	222
6	30	203	200	222	242	210	122	-25
7	32	150	142	156	100	-25	-156	-200
8	34	-25	-25	-25	-210	-258	-246	-234
9	36	-238	-270	-306	-338	-310	-250	-201
10	38	-306	-318	-318	-318	-270	-214	-170
11	40	-298	-300	-306	-278	-222	-174	-132
12	42	-262	-270	-280	-266	-218	-166	-126
13	44	-242	-250	-266	-270	-246	-202	-178
14	46	-222	-230	-238	-257	-270	-255	-242
15	48	-198	-218	-222	-250	-250	-270	-282
16		_+_25	_+_25	_+_25	_+_25	_+_25	_+_25	_+_25

Х-компонента напряженности магнитного поля (Hx) [А/м]

-400 ; 30

20

Y,cm

10

0 0

7/24

-200

-300

30

20

10

X, cm

Предварительный анализ экспериментальных данных

Приближение квазиэлектростатики

Приближение магнитостатики

X, cm

8/24

-200

Конечноэлементная модель

Геометрические размеры модели:

Радиус сечения витка: 3.2мм Внешний радиус витка: 9.5см Внешний радиус воздушной области: 20см Внешний радиус бесконечного элемента: 22 см

Свойства материалов:

	медь	воздух
Удельная электропроводность [Ом ⁻¹ ·м ⁻¹]	5.998e7	0
Относительная диэлектрическая проницаемость среды	1	1
Относительная магнитная проницаемость среды	1	1

Модель для расчета электрического поля Граничные условия

Электрическая изоляция на плоскости симметрии: *n*·*J* = 0 (ток не имеет нормальной составляющей) Потенциал – треугольный импульс. Задан функцией от времени. Амплитуда 2кВ. Потенциал = 0 на внешней

и. Потенциал = 0 на вне границе бесконечного элемента.

Переходной тип анализа. Решается уравнение квазиэлектростатики:

$$-\varepsilon\varepsilon_0\nabla\cdot\frac{\partial\nabla V}{\partial t}-\nabla\cdot(\sigma\nabla V-\boldsymbol{J}_e)=0$$

Здесь:

V – скалярный электрический потенциал

J₂ – вектор плотности тока (от внешнего источника). В данной задаче равен нулю.

Поле *Е* рассчитывается по определению потенциала *V*:

$$E = -\nabla V$$

Расчет для моментов времени: от 0 до 6 нс. Поскольку задача линейная, максимальные значения поля получаются при 5 нс (пик треугольного импульса). Все результаты выведены для данного момента времени.

Ех в горизонтальном сечении 3 см над витком

Эксперимент

Х-компонента напряженности электрического поля (Ех) [В/м]

Расчет

Min: -4650,204

Отклонение: 57%

Модуль Е в горизонтальном сечении 3 см над витком

Эксперимент

Min: 2,296e-7

Ех в вертикальном сечении через ось витка

Ех в вертикальном сечении, касательном к витку

Параметры модели для расчета магнитного поля

В эксперименте сила тока: 20 [A]

Площадь сечения проволоки: 3.217е-5 [м2]

Плотность тока: 6.217e5 [А/м²]

Магнитное поле в центре витка: 105 [А/м] (по формуле Био-Савара-Лапласа)

Стационарный тип анализа. Решается уравнение магнитостатики:

$$\frac{1}{\mu_0\mu}\nabla \times (\nabla \times A) = J_e$$

Здесь:

А – магнитный векторный потенциал

J – вектор плотности тока (известный заданный ток) Поле *H* рассчитывается по определению вектора *A*:

$$H = \frac{1}{\mu_0 \mu} \nabla \times A$$

Векторный график задаваемой плотности тока:

Электрическая изоляция на плоскости симметрии: *n*×*H* =0

Магнитная изоляция на внешней границе бесконечного элемента.

 $n \times A = 0$

Нх в горизонтальном сечении 3 см над витком

Z

Эксперимент

Х-компонента напряженности магнитного поля (Hx) [А/м]

Отклонение: 74%

Ну в горизонтальном сечении 3 см над витком

Эксперимент

Y-компонента напряженности магнитного поля (Hy) [А/м]

Hz в горизонтальном сечении 3 см над витком

Эксперимент

Z-компонента напряженности магнитного поля (Hz) [А/м]

Расчет

Силовые линии поля Н в вертикальном сечении через ось витка

Выводы

Научился рассчитывать электрическое и магнитное поля в ближней зоне элементарных источников (витка с током) в математическом пакете Comsol Multiphysics.

Получены экспериментальные данные по распределению импульсных полей в ближней зоне тестовой катушки.

Рассчитанные распределения полей качественно соответствуют экспериментальным данным.

Отклонение рассчитанных значений полей от измеренных экспериментально не превышает 77%. Наилучшее соответствие получилось для электрического поля.

В результатах экспериментальные значения всех компонент магнитного поля получились больше рассчитанных. Основная причина отличий – особенности измерительного устройства, например: размеры сменных антенн сравнимы с размерами излучателя.

Используемые приближения выбраны разумно и их можно использовать для численного расчета полей в ближней зоне.